JOURNAL OF THE
CHUNGCHEONG MATHEMATICAL SOCIETY
Volume 25, No. 4, November 2012

THE TORSION OF THE CHARACTERISTIC
CONNECTION

HwaJrong Kiv*

ABSTRACT. In [2], [8], the author studied the characteristic con-
nection as a good substitute for the Levi-Civita connection. In this
paper, we consider the space U(3)/(U(1) x U(1) x U(1)) with an al-
most Hermitian structure which admits a characteristic connection
and compute the characteristic connection concretely.

1. Introduction

Given a G-structure, if the holonomy group with respect to the Levi-
Civita connection is the whole group SO(n), the geometric structure is
not preserved by the Levi-Civita connection. But in some situation it is
known that there can exist a unique metric connection with skew sym-
metric torsion which preserves the geometric structure, and it is the char-
acteristic connection. The characteristic connection is a good substitute
for the Levi-Civita connection in studying non-integrable geometries([3],

[4], [71))-

Furthermore, the characteristic connection and its torsion are very
closely related to the string theory in theoretical physics (see [6]).

Recently, many geometric things related to the characteristic connec-
tion are studied. For example, in paper [2], the Dirac operator with
respect to the characteristic connection was studied.

Unfortunately not every geometric structure admits a characteristic
connection. In [8], we considered the homogeneous space U(3)/(U(1) X
U(1) x U(1)) and found an almost Hermitian structure which admits a
characteristic connection.
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In this paper, we will see how one can compute the characteristic
connection. It is well known that the difference of the characteristic
connection, denoted by V¢, from the Levi-Civita connection, denoted
by VY, is the torsion of the characteristic connection ([6]):

1
VY = VY + STY).

So, we will express the torsion T explicitly.

In section 2, the space M := U (3)/(U(1) xU(1) xU(1)) is introduced
with an almost Hermitian structure (M, g, J) which admits a character-
istic connection.

In section 3, we compute the torsion of the characteristic connection
Vel of (M, g, J).

I would like to thank the geometry group at Humboldt University
Berlin for many discussions on this theme.

2. The homogeneous space U(3)/(U(1) x U(1) x U(1))

We first introduce a well-known metric family and the Levi-Civita
connection of the metrics for a homogeneous reductive space ([1]).

PROPOSITION 2.1. Let M = G/H be a homogeneous space and 3 an
Ad (H)-invariant, positive definite inner product of g, the Lie algebra of
G. Form :=h', g=m @b is a reductive decomposition. Furthermore
we assume that m = m; @ my with relations

[h,mi] =my, [my,my] ChDmy,
(2.1) [h,ma] Cmy, [mg,my] Ch, [my,mp] Cmy.

Now we consider an Ad (H)-invariant inner product on m defined by
Bt = Blmyxm; + 2t0]myxmy, for each t >0

which induces a left invariant metric g+ on G/H.
Then, the Levi-Civita connection of g; is given by the map A; : m —
s0(m) defined by

M(X)Y = S[X. Y], A(X)B=1[X,B]
(2.2) MAY = (1-)[AY],  A(A)B=0,

for X, Y e my, A, B € my.
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Proof. The map A;, which actually implies the Levi-Civita connec-
tion, is uniquely characterized as follows: since the Levi-Civita connec-
tion is metric and torsion free (X.2 [9]),

MX)Y —A(Y)X = [X,YV]n,
Br(A(X)Y, Z) + B (Y, Ay(X)Z) = 0.

By direct computaions using (2.1), we can check that the map A(X)
definded as (2.2) satisfies the both conditions. O

We now take G := U(3) and H := U(1) x U(1) x U(1) C G diagonally
embedded. Then M := G/H is a 6-dimensional manifold with

g=u(3)={A € M3(C): A+A" =0}, h={Acu(3): A is diagonal}.

We define an Ad (G)-invariant inner product 8 := —3Re(trAB) for
A, B € u(3) and decompose m = bt into
0 a b 0 0 O
mp:= —a 0 0| :abeC;), mo:= 0 0 ¢ | :ceC
—-b 0 0 0 —¢ 0

Then we can check that this decomposition satisfies the properties of
Proposition 2.1 and we have well defined metrics g¢,t > 0.

We use the following notations for basis: Let Dy = (d;;) be the n xn
matrix with zero entries except that its (k,l)-entry is 1. Furthermore,
let Ey; := Dy — Dy, for k # 1 and Sk := i(Dy; + Dyx). Then

1 1
—=DF>93, €6 1= —
is an orthonormal basis of m with respect to G;. As basis for h we take
Hy = Ski/2,k=1,2,3.

LEMMA 2.2. (i) The isotropy representation Ad : H — SO(6) for
h = diag(e®, e, e (t,s,r € R) is given by
C(t—s) 0 0
Ad (h) = 0 Ct—r) 0 ,
0 0 C(s—r)

{e1 := E1g, €3 := S12, €3 := E13, €4 := S13, €5 := Sz}

where C(z) = [ cosz —sinz ]

sinz cosx
(ii) The three 2 forms e A ea, e3 A ey, e5 A eg are invariant under the
isotropy representation given in (i).

Proof. See [8]. O
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We first consider the Nijeunhuis tensor, N(X,Y) = [JX, JY]|—-J[X, JY]
— J[JX,Y] — [X,Y], where J? = —Id in an almost complex structure.
LEMMA 2.3. The Nijeunhuis tensor N satisfies
1. N(X,Y) = —N(Y, X),
2. N(X,JY)=—JN(X,Y) = N(JX,Y).
Proof. See [8]. O

We now consider a 2-forms and J on G/H, which are well-defined by
Lemma, 2.2, as follows:

(2.3) Q(X,Y):=e12 —ez1 +ese = (JX,Y) with J? = —Id,

where e;; = ¢; N e;.

Then by computation,
(2.4)
J(e1) = e2,J(e2) = —e1, J(e3) = —eq, J(ea) = e3,J(e5) = eg, J(es) = —e5.
Now we are ready to give the main theorem of [8].

THEOREM 2.1. On M = U(3)/(U(1) x U(1) x U(1)) we consider a

metric family g; and an almost complex structure J as above. Then the
characteristic connection exists only for t = %

Proof. See [8]. O

3. The torsion of the characteristic connection

Let (M, g) be a manifold with a characteristic connection. We denote
the Levi-Civita connection and the characteristic connection by V9 and
Ve, respectively. Then, it is well known that for X,Y € TM (see [6])

1
VLY = VY + ST(XY)

for some (2,1)-tensor 7" known to be the torsion of the characteristic
connection, also called simply as the characteristic torsion. So, it suffices
to compute the above torsion T for the characteristic connection V.

Furthermore, in a Hermitian manifold (M, g,J), the torsion for V"
satisfies

(3.1) T(X,Y,—) = (V4J)JY = N(X,Y) +dQUJ X, JY, J-).

Here the (2,1)-tensors T, € are considered as (3,0)-tensors. That is, for
T we define T(X,Y, Z) = g(T(X,Y), Z), similarly for €.
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We now compute the Levi-Civita connection VY using Proposition
2.1. The map A1 (see (2.2)) is simply denoted by A and we consider E;;
2

with respect to the orthonormal basis e; of m. So, E;; actually maps e;
to —e;. The following Lemma is from [1].

LEMMA 3.1. We identify m with RS and take E;; defined above as
basis of so(m). Then

A(el) = 1/4(E35 + E46), A(eg) = 1/4(E45 — E36),
Ales) = /1/A(Ex — Eis), Mes) = —\/1/4(Er6 + Eas),
Ales) = %(EL'S + Ea4), A(es) = %(EM — E»3).

Proof. First by computations we obtain the following commutators:

le1,ea] = 2(Hy — Hj), le1,e3] = —es, [e1,e4] = —eg,
[61765 = €3, [61766] = ¢4, [€2a63] = €g,
lea,eq] = —es, lea,e5] = eq, [ea,e6] = —es,
les,eq] = 2(Hi— H3), [e3,e5] = —e1, [e3,e6] = e,
les,e5] = —eg, lea,e6] = —e1, [es,e6] = 2(Hy — H3).
We compute A(er). From Proposition 2.1 A(e1)e; = 3[e1, ei]pe for i =
L,---,4 and A(e1)e; = %[el,ej] for 7 = 1,2. Hence, using the above
commutators,
A(61)61 =0
A(61)62 = (H1 — Hg)m2 = 0,
1 1
A(€1)€3 = 5[61763]\112 = *5657
Aler)es = 5ler,ealms = —
61 64 - 2 61764 rn2 - 2667
1 1
A(er)es = 5[61,65] =53
1 1
A(el)eﬁ = 5[61,66] = 564.

We consider E;; which maps e; of m and e; to e;. Then we have

1
Afer) = §(E35 + Eyp).

We obtain the other results by similar computations. O
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LEMMA 3.2.

(3.2) Arlen)w =) (e 1 Ay(es)) A (ej Jw),
J
Proof. An element of the Lie algebra so(n) acts on A’RS as follows:
let A € so(n) and e;,e; € RY then
A(ez- A €j) = A(ez) ANej+ e A A(ej).

A¢(e;) is an element of the Lie algebra so(m) and m can be identified
with R®. And A4(e;) is a linear combination of E;;’s (Lemma 3.1). So
we investigate the action of E;; on A’RS. For e, Aep € A’RS Kk #£1,

Eij(ek A el) = Eij(ek) Nep+ep A Eij(el)
= (—0ixej + 0jre;) Nep +er A (—daej + 0je;)
= —ejNeg
(3.3) = (e; 1 Eij;) N (eid(eiNep)).

(3.3) holds for all the basis elements of m and it implies the formula
(3.2). 0

Let M =U(3)/(U(1) x U(1) x U(1)) with metric g1 and an almost
2
complex structure J as follows:

J(e1) = ez, J(e2) = —eq, J(e3) = —eq, J(eq) = e3,J(e5) = e, J(e6) = —es.

Note that the above J is induced from a 2-form Q(X,Y) := ej2 — e34 +
es6 =: g1 (JX,Y). Then we obtain:
2

THEOREM 3.3. The manifold (M, g1,J) as above admits a charac-
2
teristic connection

1
VY = V5Y + 5T(X, Y, —),
with T' = eg45 — €236 + €135 + €146, Where e;j, means e; A e; N e,.
Proof. By (3.1), we need to compute df2 and N in (M, g, J).

i) First df) is given by

Q=) e AVIQ,

(2
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so we compute V.Q, Q = e19 —e34 + €56, 1 = 1,--- ,6. Recall that the
three 2-forms w =eq9, €34, €56 are invariant under the isotropy represen-
tation (Lemma 2.2). And from Proposition 2.1 and Lemma 3.2,

(3.4) Vo9w = Ay(ei)w =Y (ej I As(ei)) Aej Jw).
J
Note that E;; maps e; to —e;, so E;; can be identified with the two form
—eij.
From Lemma 3.1 A(e1) = §(Ess5 + Eug) identified with 3(ess + eup),
so ej 1A(e1) =0 for j =1,2 and (3.4) implies

Ve €12 = Ve,e12 = 0.

Similarly

Vese34 = Veyezq4 =0
and

Veses6 = Vegese = 0.
Now

Veresa = (ej 1A(e1)) A (ej I esq)
J
= —% Z(ej I (e35 +eap)) A (e 1 esq)

= ——((e3 1 (e35 +€46)) A (€3 e3s) + (ea J (e35 + €46)) N (€4 J €34))

— N |

= —5(65 Neg—egNes)
1
= 5(645 — €36)

and
Ve, €56 = Z(ej N A(el)) VAN (6j N 656)

J

1

=—3 Z(ej 1 (e35 + eq6)) A (ej I ese)
J

= *% ((e5 J (e35 +e46)) A (e5 Jess) + (e6 ) (€35 + e46)) A (e6 - €56))

1
= —5(—63 Neg+eq N 65)
1

= 5(636 — e45).
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Similarly,

1 1
v62€34 = —5 Z(ej | (645 — 636)) A (ej | 634) = —5(646 + 635).
J

1 1
V62656 = —5 Z(ej _ (645 — 636)) A (ej _ 656) = 5(646 + 635).
J

1 1
Ve3612 = —5 Z(ej | (626 — 615)) A (ej _ 612) = —5(616 + 625).
J

1 1
Veses6 = 5 Z(ej 1 (e26 — e15)) A (ej des6) = _5(616 + €25).
J
1 1
V64612 = i Z(ej _ (616 + 625)) A (6j _ 612) = 5(615 — 626).
J
1 1
V€4656 = 5 Z(ej _ (616 + 625)) A (6j _ 656) = 5(615 — 626).
J
1 1
Ve5€12 = —5 Z(ej _ (613 + 624)) A\ ((Bj _ 612) = 5(623 — 614).
J
1 1
Vesezq = 5 Z(ej J(e13+e24)) A(ej Jess) = 5(614 — €23).
J

V€12 = —% Z(ej d(e1q —e23)) A(ejdern) = %(613 + e24).
J
Veg€34 = ! Z(ej A (e1a —e23)) A (ej tess) = —1(613 + e94).
2 I 2
Note that
Ve,€31+ Ve €56 = Veye34 + Veye56 = Vegera + Vegesn
= Vege12 + Vegezs = 0,

Vese12 = Vezess, Ve,e12 = Ve, es6.
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So, we have
aQ = > e AVLQ

= Z e; ANV, (e12 — 34 + e56)

i
= 2(61 A Vg1€56 + e A Vg2€56 +e3 A V63€12 +e4 N Ve4612
+ e5 A Vese1a +eg A Ve6612)
= e1 A (es6 — ea5) +e2 A (€6 + e35) — e3 A (e16 + eas)
+eq A (615 — 626) +e5 A (623 — 614) +eg A\ (613 + 624)
= 3(e136 — €145 + €216 + €235)-

And from (2.4)
dS)(J) = —3(eas — €236 + €135 + €146)-

ii) The Nijenhuis tensor N.

Using Lemma 2.3, by computation we have (for details see [8])

N(el,eg) = N(€3,€4) = N(65,66) =0.

And
N(€1,€3) = N(€2,€4) = 465,
N(ej,e5) = —N(ez, e5) = —4es,
N(€3,€5) = N(€4,€6) = 461,
N(ela 64) - N(627 63) = _4667
N(ei,e6) = N(ez, e5) = —4ey,
N(es,eg) = N(es, e5)=4es.

So as a (3,0)-tensor,
N = 4(e245 — €236 + €135 + €146)-
iii) By 1), ii) and (3.1)

T = N +dQ(J) = ez45 — €236 + €135 + €146
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