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THE TORSION OF THE CHARACTERISTIC
CONNECTION

Hwajeong Kim*

Abstract. In [2], [8], the author studied the characteristic con-
nection as a good substitute for the Levi-Civita connection. In this
paper, we consider the space U(3)/(U(1)×U(1)×U(1)) with an al-
most Hermitian structure which admits a characteristic connection
and compute the characteristic connection concretely.

1. Introduction

Given a G-structure, if the holonomy group with respect to the Levi-
Civita connection is the whole group SO(n), the geometric structure is
not preserved by the Levi-Civita connection. But in some situation it is
known that there can exist a unique metric connection with skew sym-
metric torsion which preserves the geometric structure, and it is the char-
acteristic connection. The characteristic connection is a good substitute
for the Levi-Civita connection in studying non-integrable geometries([3],
[4], [7])).

Furthermore, the characteristic connection and its torsion are very
closely related to the string theory in theoretical physics (see [6]).

Recently, many geometric things related to the characteristic connec-
tion are studied. For example, in paper [2], the Dirac operator with
respect to the characteristic connection was studied.

Unfortunately not every geometric structure admits a characteristic
connection. In [8], we considered the homogeneous space U(3)/(U(1)×
U(1)× U(1)) and found an almost Hermitian structure which admits a
characteristic connection.
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In this paper, we will see how one can compute the characteristic
connection. It is well known that the difference of the characteristic
connection, denoted by ∇ch, from the Levi-Civita connection, denoted
by ∇g, is the torsion of the characteristic connection ([6]):

∇ch
X Y = ∇g

XY +
1
2
T (X,Y ).

So, we will express the torsion T explicitly.

In section 2, the space M := U(3)/(U(1)×U(1)×U(1)) is introduced
with an almost Hermitian structure (M, g, J) which admits a character-
istic connection.

In section 3, we compute the torsion of the characteristic connection
∇ch of (M, g, J).

I would like to thank the geometry group at Humboldt University
Berlin for many discussions on this theme.

2. The homogeneous space U(3)/(U(1)× U(1)× U(1))

We first introduce a well-known metric family and the Levi-Civita
connection of the metrics for a homogeneous reductive space ([1]).

Proposition 2.1. Let M = G/H be a homogeneous space and β an
Ad (H)-invariant, positive definite inner product of g, the Lie algebra of
G. For m := h⊥, g = m ⊕ h is a reductive decomposition. Furthermore
we assume that m = m1 ⊕m2 with relations

[h, m1] = m1, [m1, m1] ⊂ h⊕m2,

[h, m2] ⊂ m2, [m2, m2] ⊂ h, [m1,m2] ⊂ m1.(2.1)

Now we consider an Ad (H)-invariant inner product on m defined by

βt := β|m1×m1 + 2tβ|m2×m2 , for each t > 0

which induces a left invariant metric gt on G/H.
Then, the Levi-Civita connection of gt is given by the map Λt : m →
so(m) defined by

Λt(X)Y =
1
2
[X,Y ]m2 , Λt(X)B = t[X,B],

Λt(A)Y = (1− t)[A, Y ], Λt(A)B = 0,(2.2)

for X, Y ∈ m1, A,B ∈ m2.
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Proof. The map Λt, which actually implies the Levi-Civita connec-
tion, is uniquely characterized as follows: since the Levi-Civita connec-
tion is metric and torsion free (X.2 [9]),

Λt(X)Y − Λt(Y )X = [X,Y ]m,

βt(Λt(X)Y, Z) + βt(Y,Λt(X)Z) = 0.

By direct computaions using (2.1), we can check that the map Λt(X)
definded as (2.2) satisfies the both conditions.

We now take G := U(3) and H := U(1) × U(1) × U(1) ⊂ G diagonally
embedded. Then M := G/H is a 6-dimensional manifold with

g = u(3) = {A ∈ M3(C) : A+Āt = 0}, h = {A ∈ u(3) : A is diagonal}.
We define an Ad (G)-invariant inner product β := −1

2Re(trAB) for
A,B ∈ u(3) and decompose m = h⊥ into

m1 : =








0 a b
−ā 0 0
−b̄ 0 0


 : a, b ∈ C



 , m2 : =








0 0 0
0 0 c
0 −c̄ 0


 : c ∈ C



 .

Then we can check that this decomposition satisfies the properties of
Proposition 2.1 and we have well defined metrics gt, t > 0.

We use the following notations for basis: Let Dkl = (dij) be the n×n
matrix with zero entries except that its (k, l)-entry is 1. Furthermore,
let Ekl := Dkl −Dlk for k 6= l and Skl := i(Dkl + Dlk). Then

{e1 := E12, e2 := S12, e3 := E13, e4 := S13, e5 :=
1√
2t

E23, e6 :=
1√
2t

S23}

is an orthonormal basis of m with respect to βt. As basis for h we take
Hk = Skk/2, k = 1, 2, 3.

Lemma 2.2. (i) The isotropy representation Ad : H → SO(6) for
h = diag(eit, eis, eir) (t, s, r ∈ R) is given by

Ad (h) =




C(t− s) 0 0
0 C(t− r) 0
0 0 C(s− r)


 ,

where C(x) :=
[

cosx − sinx
sinx cosx

]
.

(ii) The three 2 forms e1 ∧ e2, e3 ∧ e4, e5 ∧ e6 are invariant under the
isotropy representation given in (i).

Proof. See [8].
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We first consider the Nijeunhuis tensor, N(X, Y ) = [JX, JY ]−J [X,JY ]
− J [JX, Y ]− [X, Y ], where J2 = −Id in an almost complex structure.

Lemma 2.3. The Nijeunhuis tensor N satisfies

1. N(X,Y ) = −N(Y, X),
2. N(X,JY ) = −JN(X, Y ) = N(JX, Y ).

Proof. See [8].

We now consider a 2-forms and J on G/H, which are well-defined by
Lemma 2.2, as follows:

(2.3) Ω(X,Y ) := e12 − e34 + e56 =: gt(JX, Y ) with J2 = −Id,

where eij = ei ∧ ej .
Then by computation,

(2.4)
J(e1) = e2, J(e2) = −e1, J(e3) = −e4, J(e4) = e3, J(e5) = e6, J(e6) = −e5.

Now we are ready to give the main theorem of [8].

Theorem 2.1. On M = U(3)/(U(1) × U(1) × U(1)) we consider a
metric family gt and an almost complex structure J as above. Then the
characteristic connection exists only for t = 1

2 .

Proof. See [8].

3. The torsion of the characteristic connection

Let (M, g) be a manifold with a characteristic connection. We denote
the Levi-Civita connection and the characteristic connection by ∇g and
∇ch, respectively. Then, it is well known that for X,Y ∈ TM (see [6])

∇ch
X Y = ∇g

XY +
1
2
T (X, Y )

for some (2, 1)-tensor T known to be the torsion of the characteristic
connection, also called simply as the characteristic torsion. So, it suffices
to compute the above torsion T for the characteristic connection ∇ch.

Furthermore, in a Hermitian manifold (M, g, J), the torsion for ∇ch

satisfies

T (X,Y,−) = (∇g
XJ)JY = N(X,Y ) + dΩ(JX, JY, J−).(3.1)

Here the (2, 1)-tensors T , Ω are considered as (3, 0)-tensors. That is, for
T we define T (X, Y, Z) = g(T (X, Y ), Z), similarly for Ω.
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We now compute the Levi-Civita connection ∇g using Proposition
2.1. The map Λ 1

2
(see (2.2)) is simply denoted by Λ and we consider Eij

with respect to the orthonormal basis ei of m. So, Eij actually maps ei

to −ej . The following Lemma is from [1].

Lemma 3.1. We identify m with R6 and take Eij defined above as
basis of so(m). Then

Λ(e1) =
√

1/4(E35 + E46), Λ(e2) =
√

1/4(E45 − E36),

Λ(e3) =
√

1/4(E26 −E15), Λ(e4) = −
√

1/4(E16 + E25),

Λ(e5) =
1
2
(E13 + E24), Λ(e6) =

1
2
(E14 − E23).

Proof. First by computations we obtain the following commutators:

[e1, e2] = 2(H1 −H2), [e1, e3] = −e5, [e1, e4] = −e6,

[e1, e5] = e3, [e1, e6] = e4, [e2, e3] = e6,

[e2, e4] = −e5, [e2, e5] = e4, [e2, e6] = −e3,

[e3, e4] = 2(H1 −H3), [e3, e5] = −e1, [e3, e6] = e2,

[e4, e5] = −e2, [e4, e6] = −e1, [e5, e6] = 2(H2 −H3).

We compute Λ(e1). From Proposition 2.1 Λ(e1)ei = 1
2 [e1, ei]m2 for i =

1, · · · , 4 and Λ(e1)ej = 1
2 [e1, ej ] for j = 1, 2. Hence, using the above

commutators,
Λ(e1)e1 = 0

Λ(e1)e2 = (H1 −H2)m2 = 0,

Λ(e1)e3 =
1
2
[e1, e3]m2 = −1

2
e5,

Λ(e1)e4 =
1
2
[e1, e4]m2 = −1

2
e6,

Λ(e1)e5 =
1
2
[e1, e5] =

1
2
e3,

Λ(e1)e6 =
1
2
[e1, e6] =

1
2
e4.

We consider Eij which maps ei of m and ej to ei. Then we have

Λ(e1) =
1
2
(E35 + E46).

We obtain the other results by similar computations.
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Lemma 3.2.

Λt(ei)w =
∑

j

(ej Λt(ei)) ∧ (ej w),(3.2)

Proof. An element of the Lie algebra so(n) acts on Λ2R6 as follows:
let A ∈ so(n) and ei, ej ∈ R6 then

A(ei ∧ ej) := A(ei) ∧ ej + ei ∧A(ej).

Λt(ei) is an element of the Lie algebra so(m) and m can be identified
with R6. And Λt(ei) is a linear combination of Eij ’s (Lemma 3.1). So
we investigate the action of Eij on Λ2R6. For ek ∧ el ∈ Λ2R6, k 6= l,

Eij(ek ∧ el) = Eij(ek) ∧ el + ek ∧ Eij(el)
= (−δikej + δjkei) ∧ el + ek ∧ (−δilej + δjlei)
= −ej ∧ ei

= (ei Eij) ∧ (ei (ei ∧ el)).(3.3)

(3.3) holds for all the basis elements of m and it implies the formula
(3.2).

Let M = U(3)/(U(1) × U(1) × U(1)) with metric g 1
2

and an almost
complex structure J as follows:

J(e1) = e2, J(e2) = −e1, J(e3) = −e4, J(e4) = e3, J(e5) = e6, J(e6) = −e5.

Note that the above J is induced from a 2-form Ω(X, Y ) := e12 − e34 +
e56 =: g 1

2
(JX, Y ). Then we obtain:

Theorem 3.3. The manifold (M, g 1
2
, J) as above admits a charac-

teristic connection

∇ch
X Y = ∇g

XY +
1
2
T (X, Y,−),

with T = e245 − e236 + e135 + e146, where eijk means ei ∧ ej ∧ ek.

Proof. By (3.1), we need to compute dΩ and N in (M, g, J).

i) First dΩ is given by

dΩ =
∑

i

ei ∧∇g
ei

Ω,
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so we compute ∇g
eiΩ, Ω = e12 − e34 + e56, i = 1, · · · , 6. Recall that the

three 2-forms w =e12, e34, e56 are invariant under the isotropy represen-
tation (Lemma 2.2). And from Proposition 2.1 and Lemma 3.2,

∇g
ei

w = Λt(ei)w =
∑

j

(ej Λt(ei)) ∧ (ej w).(3.4)

Note that Eij maps ei to −ej , so Eij can be identified with the two form
−eij .

From Lemma 3.1 Λ(e1) = 1
2(E35 + E46) identified with 1

2(e35 + e46),
so ej Λ(e1) = 0 for j = 1, 2 and (3.4) implies

∇e1e12 = ∇e2e12 = 0.

Similarly
∇e3e34 = ∇e4e34 = 0

and
∇e5e56 = ∇e6e56 = 0.

Now

∇e1e34 =
∑

j

(ej Λ(e1)) ∧ (ej e34)

= −1
2

∑

j

(ej (e35 + e46)) ∧ (ej e34)

= −1
2

((e3 (e35 + e46)) ∧ (e3 e34) + (e4 (e35 + e46)) ∧ (e4 e34))

= −1
2
(e5 ∧ e4 − e6 ∧ e3)

=
1
2
(e45 − e36)

and

∇e1e56 =
∑

j

(ej Λ(e1)) ∧ (ej e56)

= −1
2

∑

j

(ej (e35 + e46)) ∧ (ej e56)

= −1
2

((e5 (e35 + e46)) ∧ (e5 e56) + (e6 (e35 + e46)) ∧ (e6 e56))

= −1
2
(−e3 ∧ e6 + e4 ∧ e5)

=
1
2
(e36 − e45).
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Similarly,

∇e2e34 = −1
2

∑

j

(ej (e45 − e36)) ∧ (ej e34) = −1
2
(e46 + e35).

∇e2e56 = −1
2

∑

j

(ej (e45 − e36)) ∧ (ej e56) =
1
2
(e46 + e35).

∇e3e12 = −1
2

∑

j

(ej (e26 − e15)) ∧ (ej e12) = −1
2
(e16 + e25).

∇e3e56 = −1
2

∑

j

(ej (e26 − e15)) ∧ (ej e56) = −1
2
(e16 + e25).

∇e4e12 =
1
2

∑

j

(ej (e16 + e25)) ∧ (ej e12) =
1
2
(e15 − e26).

∇e4e56 =
1
2

∑

j

(ej (e16 + e25)) ∧ (ej e56) =
1
2
(e15 − e26).

∇e5e12 = −1
2

∑

j

(ej (e13 + e24)) ∧ (ej e12) =
1
2
(e23 − e14).

∇e5e34 = −1
2

∑

j

(ej (e13 + e24)) ∧ (ej e34) =
1
2
(e14 − e23).

∇e6e12 = −1
2

∑

j

(ej (e14 − e23)) ∧ (ej e12) =
1
2
(e13 + e24).

∇e6e34 = −1
2

∑

j

(ej (e14 − e23)) ∧ (ej e34) = −1
2
(e13 + e24).

Note that

∇e1e34 +∇e1e56 = ∇e2e34 +∇e2e56 = ∇e5e12 +∇e5e34

= ∇e6e12 +∇e6e34 = 0,

∇e3e12 = ∇e3e56, ∇e4e12 = ∇e4e56.
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So, we have

dΩ =
∑

i

ei ∧∇g
ei

Ω

=
∑

i

ei ∧∇g
ei

(e12 − e34 + e56)

= 2(e1 ∧∇g
e1

e56 + e2 ∧∇g
e2

e56 + e3 ∧∇e3e12 + e4 ∧∇e4e12

+ e5 ∧∇e5e12 + e6 ∧∇e6e12)
= e1 ∧ (e36 − e45) + e2 ∧ (e46 + e35)− e3 ∧ (e16 + e25)

+e4 ∧ (e15 − e26) + e5 ∧ (e23 − e14) + e6 ∧ (e13 + e24)
= 3(e136 − e145 + e246 + e235).

And from (2.4)

dΩ(J) = −3(e245 − e236 + e135 + e146).

ii) The Nijenhuis tensor N .

Using Lemma 2.3, by computation we have (for details see [8])

N(e1, e2) = N(e3, e4) = N(e5, e6) = 0.

And

N(e1, e3) = N(e2, e4) = 4e5,

N(e1, e5) = −N(e2, e6) = −4e3,

N(e3, e5) = N(e4, e6) = 4e1,

N(e1, e4) = N(e2, e3) = −4e6,

N(e1, e6) = N(e2, e5) = −4e4,

N(e3, e6) = N(e4, e5) = 4e2.

So as a (3, 0)-tensor,

N = 4(e245 − e236 + e135 + e146).

iii) By i), ii) and (3.1)

T = N + dΩ(J) = e245 − e236 + e135 + e146.
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