THE TORSION OF THE CHARACTERISTIC CONNECTION

Hwajeong Kim*

Abstract

In [2], [8], the author studied the characteristic connection as a good substitute for the Levi-Civita connection. In this paper, we consider the space $U(3) /(U(1) \times U(1) \times U(1))$ with an almost Hermitian structure which admits a characteristic connection and compute the characteristic connection concretely.

1. Introduction

Given a G-structure, if the holonomy group with respect to the LeviCivita connection is the whole group $\mathrm{SO}(n)$, the geometric structure is not preserved by the Levi-Civita connection. But in some situation it is known that there can exist a unique metric connection with skew symmetric torsion which preserves the geometric structure, and it is the characteristic connection. The characteristic connection is a good substitute for the Levi-Civita connection in studying non-integrable geometries([3], [4], [7])).

Furthermore, the characteristic connection and its torsion are very closely related to the string theory in theoretical physics (see [6]).

Recently, many geometric things related to the characteristic connection are studied. For example, in paper [2], the Dirac operator with respect to the characteristic connection was studied.

Unfortunately not every geometric structure admits a characteristic connection. In [8], we considered the homogeneous space $U(3) /(U(1) \times$ $U(1) \times U(1))$ and found an almost Hermitian structure which admits a characteristic connection.

[^0]In this paper, we will see how one can compute the characteristic connection. It is well known that the difference of the characteristic connection, denoted by $\nabla^{c h}$, from the Levi-Civita connection, denoted by ∇^{g}, is the torsion of the characteristic connection ([6]):

$$
\nabla_{X}^{c h} Y=\nabla_{X}^{g} Y+\frac{1}{2} T(X, Y)
$$

So, we will express the torsion T explicitly.
In section 2, the space $M:=U(3) /(U(1) \times U(1) \times U(1))$ is introduced with an almost Hermitian structure (M, g, J) which admits a characteristic connection.

In section 3, we compute the torsion of the characteristic connection $\nabla^{c h}$ of (M, g, J).

I would like to thank the geometry group at Humboldt University Berlin for many discussions on this theme.
2. The homogeneous space $U(3) /(U(1) \times U(1) \times U(1))$

We first introduce a well-known metric family and the Levi-Civita connection of the metrics for a homogeneous reductive space ([1]).

Proposition 2.1. Let $M=G / H$ be a homogeneous space and β an $\operatorname{Ad}(H)$-invariant, positive definite inner product of \mathfrak{g}, the Lie algebra of G. For $\mathfrak{m}:=\mathfrak{h}^{\perp}, \mathfrak{g}=\mathfrak{m} \oplus \mathfrak{h}$ is a reductive decomposition. Furthermore we assume that $\mathfrak{m}=\mathfrak{m}_{1} \oplus \mathfrak{m}_{2}$ with relations

$$
\begin{align*}
& {\left[\mathfrak{h}, \mathfrak{m}_{1}\right]=\mathfrak{m}_{1}, \quad\left[\mathfrak{m}_{1}, \mathfrak{m}_{1}\right] \subset \mathfrak{h} \oplus \mathfrak{m}_{2},} \\
& {\left[\mathfrak{h}, \mathfrak{m}_{2}\right] \subset \mathfrak{m}_{2}, \quad\left[\mathfrak{m}_{2}, \mathfrak{m}_{2}\right] \subset \mathfrak{h}, \quad\left[\mathfrak{m}_{1}, \mathfrak{m}_{2}\right] \subset \mathfrak{m}_{1} .} \tag{2.1}
\end{align*}
$$

Now we consider an $\operatorname{Ad}(H)$-invariant inner product on \mathfrak{m} defined by

$$
\beta_{t}:=\left.\beta\right|_{\mathfrak{m}_{1} \times \mathfrak{m}_{1}}+\left.2 t \beta\right|_{\mathfrak{m}_{2} \times \mathfrak{m}_{2}}, \text { for each } t>0
$$

which induces a left invariant metric g_{t} on G / H.
Then, the Levi-Civita connection of g_{t} is given by the map $\Lambda_{t}: \mathfrak{m} \rightarrow$ $\mathfrak{s o (m)}$ defined by

$$
\begin{align*}
\Lambda_{t}(X) Y=\frac{1}{2}[X, Y]_{\mathfrak{m}_{2}}, & & \Lambda_{t}(X) B & =t[X, B], \\
\Lambda_{t}(A) Y=(1-t)[A, Y], & & \Lambda_{t}(A) B & =0, \tag{2.2}
\end{align*}
$$

for $X, Y \in \mathfrak{m}_{1}, A, B \in \mathfrak{m}_{2}$.

Proof. The map Λ_{t}, which actually implies the Levi-Civita connection, is uniquely characterized as follows: since the Levi-Civita connection is metric and torsion free (X.2 [9]),

$$
\begin{aligned}
\Lambda_{t}(X) Y-\Lambda_{t}(Y) X & =[X, Y]_{\mathfrak{m}} \\
\beta_{t}\left(\Lambda_{t}(X) Y, Z\right)+\beta_{t}\left(Y, \Lambda_{t}(X) Z\right) & =0
\end{aligned}
$$

By direct computaions using (2.1), we can check that the map $\Lambda_{t}(X)$ definded as (2.2) satisfies the both conditions.

We now take $G:=U(3)$ and $H:=U(1) \times U(1) \times U(1) \subset G$ diagonally embedded. Then $M:=G / H$ is a 6 -dimensional manifold with
$\mathfrak{g}=\mathfrak{u}(3)=\left\{A \in M_{3}(\mathbb{C}): A+\bar{A}^{t}=0\right\}, \mathfrak{h}=\{A \in \mathfrak{u}(3):$ A is diagonal $\}$. We define an $\operatorname{Ad}(G)$-invariant inner product $\beta:=-\frac{1}{2} \operatorname{Re}(\operatorname{tr} A B)$ for $A, B \in \mathfrak{u}(3)$ and decompose $\mathfrak{m}=\mathfrak{h}^{\perp}$ into
$\mathfrak{m}_{1}:=\left\{\left[\begin{array}{ccc}0 & a & b \\ -\bar{a} & 0 & 0 \\ -\bar{b} & 0 & 0\end{array}\right]: a, b \in \mathbb{C}\right\}, \quad \mathfrak{m}_{2}:=\left\{\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & c \\ 0 & -\bar{c} & 0\end{array}\right]: c \in \mathbb{C}\right\}$.
Then we can check that this decomposition satisfies the properties of Proposition 2.1 and we have well defined metrics $g_{t}, t>0$.

We use the following notations for basis: Let $D_{k l}=\left(d_{i j}\right)$ be the $n \times n$ matrix with zero entries except that its (k, l)-entry is 1 . Furthermore, let $E_{k l}:=D_{k l}-D_{l k}$ for $k \neq l$ and $S_{k l}:=i\left(D_{k l}+D_{l k}\right)$. Then $\left\{e_{1}:=E_{12}, e_{2}:=S_{12}, e_{3}:=E_{13}, e_{4}:=S_{13}, e_{5}:=\frac{1}{\sqrt{2 t}} E_{23}, e_{6}:=\frac{1}{\sqrt{2 t}} S_{23}\right\}$ is an orthonormal basis of \mathfrak{m} with respect to β_{t}. As basis for \mathfrak{h} we take $H_{k}=S_{k k} / 2, k=1,2,3$.

Lemma 2.2. (i) The isotropy representation $\mathrm{Ad}: H \rightarrow \mathrm{SO}(6)$ for $h=\operatorname{diag}\left(e^{i t}, e^{i s}, e^{i r}\right)(t, s, r \in \mathbb{R})$ is given by

$$
\begin{gathered}
\operatorname{Ad}(h)=\left[\begin{array}{ccc}
C(t-s) & 0 & 0 \\
0 & C(t-r) & 0 \\
0 & 0 & C(s-r)
\end{array}\right] \\
\text { where } C(x):=\left[\begin{array}{cc}
\cos x & -\sin x \\
\sin x & \cos x
\end{array}\right]
\end{gathered}
$$

(ii) The three 2 forms $e_{1} \wedge e_{2}, e_{3} \wedge e_{4}, e_{5} \wedge e_{6}$ are invariant under the isotropy representation given in (i).

Proof. See [8].

We first consider the Nijeunhuis tensor, $N(X, Y)=[J X, J Y]-J[X, J Y]$ $-J[J X, Y]-[X, Y]$, where $J^{2}=-I d$ in an almost complex structure.

Lemma 2.3. The Nijeunhuis tensor N satisfies

1. $N(X, Y)=-N(Y, X)$,
2. $N(X, J Y)=-J N(X, Y)=N(J X, Y)$.

Proof. See [8].
We now consider a 2 -forms and J on G / H, which are well-defined by Lemma 2.2, as follows:

$$
\begin{equation*}
\Omega(X, Y):=e_{12}-e_{34}+e_{56}=: g_{t}(J X, Y) \text { with } J^{2}=-I d \tag{2.3}
\end{equation*}
$$

where $e_{i j}=e_{i} \wedge e_{j}$.
Then by computation,
$J\left(e_{1}\right)=e_{2}, J\left(e_{2}\right)=-e_{1}, J\left(e_{3}\right)=-e_{4}, J\left(e_{4}\right)=e_{3}, J\left(e_{5}\right)=e_{6}, J\left(e_{6}\right)=-e_{5}$.
Now we are ready to give the main theorem of [8].
ThEOREM 2.1. On $M=U(3) /(U(1) \times U(1) \times U(1))$ we consider a metric family g_{t} and an almost complex structure J as above. Then the characteristic connection exists only for $t=\frac{1}{2}$.

Proof. See [8].

3. The torsion of the characteristic connection

Let (M, g) be a manifold with a characteristic connection. We denote the Levi-Civita connection and the characteristic connection by ∇^{g} and $\nabla^{c h}$, respectively. Then, it is well known that for $X, Y \in T M$ (see [6])

$$
\nabla_{X}^{c h} Y=\nabla_{X}^{g} Y+\frac{1}{2} T(X, Y)
$$

for some (2,1)-tensor T known to be the torsion of the characteristic connection, also called simply as the characteristic torsion. So, it suffices to compute the above torsion T for the characteristic connection $\nabla^{c h}$.

Furthermore, in a Hermitian manifold (M, g, J), the torsion for $\nabla^{c h}$ satisfies
(3.1) $T(X, Y,-)=\left(\nabla_{X}^{g} J\right) J Y=N(X, Y)+d \Omega(J X, J Y, J-)$.

Here the $(2,1)$-tensors T, Ω are considered as $(3,0)$-tensors. That is, for T we define $T(X, Y, Z)=g(T(X, Y), Z)$, similarly for Ω.

We now compute the Levi-Civita connection ∇^{g} using Proposition 2.1. The map $\Lambda_{\frac{1}{2}}$ (see (2.2)) is simply denoted by Λ and we consider $E_{i j}$ with respect to the orthonormal basis e_{i} of \mathfrak{m}. So, $E_{i j}$ actually maps e_{i} to $-e_{j}$. The following Lemma is from [1].

Lemma 3.1. We identify \mathfrak{m} with \mathbb{R}^{6} and take $E_{i j}$ defined above as basis of $\mathfrak{s o}(\mathfrak{m})$. Then

$$
\begin{aligned}
\Lambda\left(e_{1}\right) & =\sqrt{1 / 4}\left(E_{35}+E_{46}\right), \Lambda\left(e_{2}\right)=\sqrt{1 / 4}\left(E_{45}-E_{36}\right) \\
\Lambda\left(e_{3}\right) & =\sqrt{1 / 4}\left(E_{26}-E_{15}\right), \Lambda\left(e_{4}\right)=-\sqrt{1 / 4}\left(E_{16}+E_{25}\right) \\
\Lambda\left(e_{5}\right) & =\frac{1}{2}\left(E_{13}+E_{24}\right), \Lambda\left(e_{6}\right)=\frac{1}{2}\left(E_{14}-E_{23}\right)
\end{aligned}
$$

Proof. First by computations we obtain the following commutators:

$$
\begin{array}{rlrl}
{\left[e_{1}, e_{2}\right]} & =2\left(H_{1}-H_{2}\right), & {\left[e_{1}, e_{3}\right]} & =-e_{5},\left[e_{1}, e_{4}\right]=-e_{6} \\
{\left[e_{1}, e_{5}\right]} & =e_{3}, & {\left[e_{1}, e_{6}\right]} & =e_{4}, \\
{\left[e_{2}, e_{4}\right]} & \left.=-e_{2}, e_{3}\right]=e_{6}, \\
{\left[e_{3}, e_{4}\right]} & =2\left(H_{1}-H_{3}\right), & {\left[e_{3}, e_{5}\right]} & =e_{4}, \\
{\left[e_{4}, e_{5}\right]} & \left.=-e_{2}, e_{6}\right]=-e_{3}, \\
& {\left[e_{3},\right.} & {\left[e_{4}, e_{6}\right]} & =-e_{1},\left[e_{5}, e_{6}\right]=2\left(H_{2}-H_{3}\right) .
\end{array}
$$

We compute $\Lambda\left(e_{1}\right)$. From Proposition $2.1 \Lambda\left(e_{1}\right) e_{i}=\frac{1}{2}\left[e_{1}, e_{i}\right]_{\mathfrak{m}^{2}}$ for $i=$ $1, \cdots, 4$ and $\Lambda\left(e_{1}\right) e_{j}=\frac{1}{2}\left[e_{1}, e_{j}\right]$ for $j=1,2$. Hence, using the above commutators,

$$
\begin{gathered}
\Lambda\left(e_{1}\right) e_{1}=0 \\
\Lambda\left(e_{1}\right) e_{2}=\left(H_{1}-H_{2}\right)_{\mathfrak{m}^{2}}=0 \\
\Lambda\left(e_{1}\right) e_{3}=\frac{1}{2}\left[e_{1}, e_{3}\right]_{\mathfrak{m}^{2}}=-\frac{1}{2} e_{5} \\
\Lambda\left(e_{1}\right) e_{4}=\frac{1}{2}\left[e_{1}, e_{4}\right]_{\mathfrak{m}^{2}}=-\frac{1}{2} e_{6} \\
\Lambda\left(e_{1}\right) e_{5}=\frac{1}{2}\left[e_{1}, e_{5}\right]=\frac{1}{2} e_{3}, \\
\Lambda\left(e_{1}\right) e_{6}=\frac{1}{2}\left[e_{1}, e_{6}\right]=\frac{1}{2} e_{4} .
\end{gathered}
$$

We consider $E_{i j}$ which maps e_{i} of \mathfrak{m} and e_{j} to e_{i}. Then we have

$$
\Lambda\left(e_{1}\right)=\frac{1}{2}\left(E_{35}+E_{46}\right)
$$

We obtain the other results by similar computations.

Lemma 3.2.

$$
\begin{equation*}
\left.\left.\Lambda_{t}\left(e_{i}\right) w=\sum_{j}\left(e_{j}\right\lrcorner \Lambda_{t}\left(e_{i}\right)\right) \wedge\left(e_{j}\right\lrcorner w\right), \tag{3.2}
\end{equation*}
$$

Proof. An element of the Lie algebra $\mathfrak{s o}(n)$ acts on $\Lambda^{2} \mathbb{R}^{6}$ as follows: let $A \in \mathfrak{s o}(n)$ and $e_{i}, e_{j} \in \mathbb{R}^{6}$ then

$$
A\left(e_{i} \wedge e_{j}\right):=A\left(e_{i}\right) \wedge e_{j}+e_{i} \wedge A\left(e_{j}\right)
$$

$\Lambda_{t}\left(e_{i}\right)$ is an element of the Lie algebra $\mathfrak{s o}(\mathfrak{m})$ and \mathfrak{m} can be identified with \mathbb{R}^{6}. And $\Lambda_{t}\left(e_{i}\right)$ is a linear combination of $E_{i j}$'s (Lemma 3.1). So we investigate the action of $E_{i j}$ on $\Lambda^{2} \mathbb{R}^{6}$. For $e_{k} \wedge e_{l} \in \Lambda^{2} \mathbb{R}^{6}, k \neq l$,

$$
\begin{align*}
E_{i j}\left(e_{k} \wedge e_{l}\right) & =E_{i j}\left(e_{k}\right) \wedge e_{l}+e_{k} \wedge E_{i j}\left(e_{l}\right) \\
& =\left(-\delta_{i k} e_{j}+\delta_{j k} e_{i}\right) \wedge e_{l}+e_{k} \wedge\left(-\delta_{i l} e_{j}+\delta_{j l} e_{i}\right) \\
& =-e_{j} \wedge e_{i} \\
& \left.\left.=\left(e_{i}\right\lrcorner E_{i j}\right) \wedge\left(e_{i}\right\lrcorner\left(e_{i} \wedge e_{l}\right)\right) . \tag{3.3}
\end{align*}
$$

(3.3) holds for all the basis elements of \mathfrak{m} and it implies the formula (3.2).

Let $M=U(3) /(U(1) \times U(1) \times U(1))$ with metric $g_{\frac{1}{2}}$ and an almost complex structure J as follows:
$J\left(e_{1}\right)=e_{2}, J\left(e_{2}\right)=-e_{1}, J\left(e_{3}\right)=-e_{4}, J\left(e_{4}\right)=e_{3}, J\left(e_{5}\right)=e_{6}, J\left(e_{6}\right)=-e_{5}$.
Note that the above J is induced from a 2 -form $\Omega(X, Y):=e_{12}-e_{34}+$ $e_{56}=: g_{\frac{1}{2}}(J X, Y)$. Then we obtain:

Theorem 3.3. The manifold $\left(M, g_{\frac{1}{2}}, J\right)$ as above admits a characteristic connection

$$
\nabla_{X}^{c h} Y=\nabla_{X}^{g} Y+\frac{1}{2} T(X, Y,-)
$$

with $T=e_{245}-e_{236}+e_{135}+e_{146}$, where $e_{i j k}$ means $e_{i} \wedge e_{j} \wedge e_{k}$.
Proof. By (3.1), we need to compute $d \Omega$ and N in (M, g, J).
i) First $d \Omega$ is given by

$$
d \Omega=\sum_{i} e_{i} \wedge \nabla_{e_{i}}^{g} \Omega
$$

so we compute $\nabla_{e_{i}}^{g} \Omega, \Omega=e_{12}-e_{34}+e_{56}, i=1, \cdots, 6$. Recall that the three 2 -forms $w=e_{12}, e_{34}, e_{56}$ are invariant under the isotropy representation (Lemma 2.2). And from Proposition 2.1 and Lemma 3.2,

$$
\begin{equation*}
\left.\left.\nabla_{e_{i}}^{g} w=\Lambda_{t}\left(e_{i}\right) w=\sum_{j}\left(e_{j}\right\lrcorner \Lambda_{t}\left(e_{i}\right)\right) \wedge\left(e_{j}\right\lrcorner w\right) \tag{3.4}
\end{equation*}
$$

Note that $E_{i j}$ maps e_{i} to $-e_{j}$, so $E_{i j}$ can be identified with the two form $-e_{i j}$.

From Lemma $3.1 \Lambda\left(e_{1}\right)=\frac{1}{2}\left(E_{35}+E_{46}\right)$ identified with $\frac{1}{2}\left(e_{35}+e_{46}\right)$, so $\left.e_{j}\right\lrcorner \Lambda\left(e_{1}\right)=0$ for $j=1,2$ and (3.4) implies

$$
\nabla_{e_{1}} e_{12}=\nabla_{e_{2}} e_{12}=0
$$

Similarly

$$
\nabla_{e_{3}} e_{34}=\nabla_{e_{4}} e_{34}=0
$$

and

$$
\nabla_{e_{5}} e_{56}=\nabla_{e_{6}} e_{56}=0
$$

Now

$$
\begin{aligned}
& \left.\left.\nabla_{e_{1}} e_{34}=\sum_{j}\left(e_{j}\right\lrcorner \Lambda\left(e_{1}\right)\right) \wedge\left(e_{j}\right\lrcorner e_{34}\right) \\
& \left.\left.=-\frac{1}{2} \sum_{j}\left(e_{j}\right\lrcorner\left(e_{35}+e_{46}\right)\right) \wedge\left(e_{j}\right\lrcorner e_{34}\right) \\
& \left.\left.\left.\left.=-\frac{1}{2}\left(\left(e_{3}\right\lrcorner\left(e_{35}+e_{46}\right)\right) \wedge\left(e_{3}\right\lrcorner e_{34}\right)+\left(e_{4}\right\lrcorner\left(e_{35}+e_{46}\right)\right) \wedge\left(e_{4}\right\lrcorner e_{34}\right)\right) \\
& =-\frac{1}{2}\left(e_{5} \wedge e_{4}-e_{6} \wedge e_{3}\right) \\
& =\frac{1}{2}\left(e_{45}-e_{36}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left.\left.\nabla_{e_{1}} e_{56}=\sum_{j}\left(e_{j}\right\lrcorner \Lambda\left(e_{1}\right)\right) \wedge\left(e_{j}\right\lrcorner e_{56}\right) \\
& \left.\left.=-\frac{1}{2} \sum_{j}\left(e_{j}\right\lrcorner\left(e_{35}+e_{46}\right)\right) \wedge\left(e_{j}\right\lrcorner e_{56}\right) \\
& \left.\left.\left.\left.=-\frac{1}{2}\left(\left(e_{5}\right\lrcorner\left(e_{35}+e_{46}\right)\right) \wedge\left(e_{5}\right\lrcorner e_{56}\right)+\left(e_{6}\right\lrcorner\left(e_{35}+e_{46}\right)\right) \wedge\left(e_{6}\right\lrcorner e_{56}\right)\right) \\
& =-\frac{1}{2}\left(-e_{3} \wedge e_{6}+e_{4} \wedge e_{5}\right) \\
& =\frac{1}{2}\left(e_{36}-e_{45}\right)
\end{aligned}
$$

Similarly,

$$
\begin{gathered}
\left.\left.\nabla_{e_{2}} e_{34}=-\frac{1}{2} \sum_{j}\left(e_{j}\right\lrcorner\left(e_{45}-e_{36}\right)\right) \wedge\left(e_{j}\right\lrcorner e_{34}\right)=-\frac{1}{2}\left(e_{46}+e_{35}\right) . \\
\left.\left.\nabla_{e_{2}} e_{56}=-\frac{1}{2} \sum_{j}\left(e_{j}\right\lrcorner\left(e_{45}-e_{36}\right)\right) \wedge\left(e_{j}\right\lrcorner e_{56}\right)=\frac{1}{2}\left(e_{46}+e_{35}\right) . \\
\left.\left.\nabla_{e_{3}} e_{12}=-\frac{1}{2} \sum_{j}\left(e_{j}\right\lrcorner\left(e_{26}-e_{15}\right)\right) \wedge\left(e_{j}\right\lrcorner e_{12}\right)=-\frac{1}{2}\left(e_{16}+e_{25}\right) . \\
\left.\left.\nabla_{e_{3}} e_{56}=-\frac{1}{2} \sum_{j}\left(e_{j}\right\lrcorner\left(e_{26}-e_{15}\right)\right) \wedge\left(e_{j}\right\lrcorner e_{56}\right)=-\frac{1}{2}\left(e_{16}+e_{25}\right) . \\
\left.\left.\nabla_{e_{4}} e_{12}=\frac{1}{2} \sum_{j}\left(e_{j}\right\lrcorner\left(e_{16}+e_{25}\right)\right) \wedge\left(e_{j}\right\lrcorner e_{12}\right)=\frac{1}{2}\left(e_{15}-e_{26}\right) . \\
\left.\left.\nabla_{e_{4}} e_{56}=\frac{1}{2} \sum_{j}\left(e_{j}\right\lrcorner\left(e_{16}+e_{25}\right)\right) \wedge\left(e_{j}\right\lrcorner e_{56}\right)=\frac{1}{2}\left(e_{15}-e_{26}\right) . \\
\left.\left.\nabla_{e_{5}} e_{12}=-\frac{1}{2} \sum_{j}\left(e_{j}\right\lrcorner\left(e_{13}+e_{24}\right)\right) \wedge\left(e_{j}\right\lrcorner e_{12}\right)=\frac{1}{2}\left(e_{23}-e_{14}\right) . \\
\left.\left.\nabla_{e_{5}} e_{34}=-\frac{1}{2} \sum_{j}\left(e_{j}\right\lrcorner\left(e_{13}+e_{24}\right)\right) \wedge\left(e_{j}\right\lrcorner e_{34}\right)=\frac{1}{2}\left(e_{14}-e_{23}\right) . \\
\left.\left.\nabla_{e_{6}} e_{12}=-\frac{1}{2} \sum_{j}\left(e_{j}\right\lrcorner\left(e_{14}-e_{23}\right)\right) \wedge\left(e_{j}\right\lrcorner e_{12}\right)=\frac{1}{2}\left(e_{13}+e_{24}\right) . \\
\left.\left.\nabla_{e_{6}} e_{34}=-\frac{1}{2} \sum_{j}\left(e_{j}\right\lrcorner\left(e_{14}-e_{23}\right)\right) \wedge\left(e_{j}\right\lrcorner e_{34}\right)=-\frac{1}{2}\left(e_{13}+e_{24}\right) .
\end{gathered}
$$

Note that

$$
\begin{aligned}
\nabla_{e_{1}} e_{34}+\nabla_{e_{1}} e_{56} & =\nabla_{e_{2}} e_{34}+\nabla_{e_{2}} e_{56}=\nabla_{e_{5}} e_{12}+\nabla_{e_{5}} e_{34} \\
& =\nabla_{e_{6}} e_{12}+\nabla_{e_{6}} e_{34}=0 \\
\nabla_{e_{3}} e_{12} & =\nabla_{e_{3}} e_{56}, \quad \nabla_{e_{4}} e_{12}=\nabla_{e_{4}} e_{56}
\end{aligned}
$$

So, we have

$$
\begin{aligned}
d \Omega= & \sum_{i} e_{i} \wedge \nabla_{e_{i}}^{g} \Omega \\
= & \sum_{i} e_{i} \wedge \nabla_{e_{i}}^{g}\left(e_{12}-e_{34}+e_{56}\right) \\
= & 2\left(e_{1} \wedge \nabla_{e_{1}}^{g} e_{56}+e_{2} \wedge \nabla_{e_{2}}^{g} e_{56}+e_{3} \wedge \nabla_{e_{3}} e_{12}+e_{4} \wedge \nabla_{e_{4}} e_{12}\right. \\
& \left.+e_{5} \wedge \nabla_{e_{5}} e_{12}+e_{6} \wedge \nabla_{e_{6}} e_{12}\right) \\
= & e_{1} \wedge\left(e_{36}-e_{45}\right)+e_{2} \wedge\left(e_{46}+e_{35}\right)-e_{3} \wedge\left(e_{16}+e_{25}\right) \\
& +e_{4} \wedge\left(e_{15}-e_{26}\right)+e_{5} \wedge\left(e_{23}-e_{14}\right)+e_{6} \wedge\left(e_{13}+e_{24}\right) \\
= & 3\left(e_{136}-e_{145}+e_{246}+e_{235}\right) .
\end{aligned}
$$

And from (2.4)

$$
d \Omega(J)=-3\left(e_{245}-e_{236}+e_{135}+e_{146}\right)
$$

ii) The Nijenhuis tensor N.

Using Lemma 2.3, by computation we have (for details see [8])

$$
N\left(e_{1}, e_{2}\right)=N\left(e_{3}, e_{4}\right)=N\left(e_{5}, e_{6}\right)=0
$$

And

$$
\begin{aligned}
& N\left(e_{1}, e_{3}\right)=N\left(e_{2}, e_{4}\right)=4 e_{5}, \\
& N\left(e_{1}, e_{5}\right)=-N\left(e_{2}, e_{6}\right)=-4 e_{3}, \\
& N\left(e_{3}, e_{5}\right)=N\left(e_{4}, e_{6}\right)=4 e_{1}, \\
& N\left(e_{1}, e_{4}\right)=N\left(e_{2}, e_{3}\right)=-4 e_{6}, \\
& N\left(e_{1}, e_{6}\right)=N\left(e_{2}, e_{5}\right)=-4 e_{4}, \\
& N\left(e_{3}, e_{6}\right)=N\left(e_{4}, e_{5}\right)=4 e_{2} .
\end{aligned}
$$

So as a $(3,0)$-tensor,

$$
N=4\left(e_{245}-e_{236}+e_{135}+e_{146}\right)
$$

iii) By i), ii) and (3.1)

$$
T=N+d \Omega(J)=e_{245}-e_{236}+e_{135}+e_{146}
$$

References

[1] I. Agricola, Differential Geometry III, Lecture given in 2007.
[2] I. Agricola, J. Bercker-bender, and H. Kim, Twistor operators with torsions, preprint, 2011.
[3] D. Chinea and G. Gonzales, A classification of almost contact metric manifolds, Ann. Mat. Pura Appl. 156 (1990), 15-36.
[4] M. Fernández and A. Gray, Riemannian manifolds with structure Group G_{2}, Ann. Mat. Pura Appl. 132 (1982), 19-45.
[5] Th. Friedrich, On types of non-integrable geometries, REnd. Circ. Mat. Palermo (2) Suppl. 71 (2003), 99-113.
[6] Th. Friedrich and S. Ivanov, Parallel spinors and connections with skewsymmetric torsion in string theory, Asian Journ. Math. 6 (2002), 303-336.
[7] A. Gray and L. M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. 123 (1980), 35-28
[8] H. Kim, The characteristic connection on 6-dimensional almost Hermitian manifolds, Journal of the Chungcheong Mathematical Society 24 (2011), no. 4, 725-733.
[9] S. Kobayashi and K. Nomizu, Foundations of differential geometry II, Wiley Inc., Princeton, 1969

*

Department of Mathematics
Hannam University
Daejeon 306-791, Republic of Korea
E-mail: hwajkim@hnu.kr

[^0]: Received January 31, 2012; Accepted April 17, 2012.
 2010 Mathematics Subject Classification: Primary 53C25; Secondary 81T30.
 Key words and phrases: characteristic connection, torsion, skew-symmetric torsion, non-integrable.

